Nonpersistence of Resonant Caustics in Perturbed Elliptic Billiards
نویسندگان
چکیده
Caustics are curves with the property that a billiard trajectory, once tangent to it, stays tangent after every reflection at the boundary of the billiard table. When the billiard table is an ellipse, any nonsingular billiard trajectory has a caustic, which can be either a confocal ellipse or a confocal hyperbola. Resonant caustics —the ones whose tangent trajectories are closed polygons— are destroyed under generic perturbations of the billiard table. We prove that none of the resonant elliptical caustics persists under a large class of explicit perturbations of the original ellipse. This result follows from a standard Melnikov argument and the analysis of the complex singularities of certain elliptic functions.
منابع مشابه
Sub-riemannian Geometry and Periodic Orbits in Classical Billiards
Classical (Birkhoff) billiards with full 1-parameter families of periodic orbits are considered. It is shown that construction of a convex billiard with a “rational” caustic (i.e. carrying only periodic orbits ) can be reformulated as the problem of finding a closed curve tangent to a non-integrable distribution on a manifold. The properties of this distribution are described as well as the con...
متن کاملBilliards in Finsler and Minkowski geometries
We begin the study of billiard dynamics in Finsler geometry. We deduce the Finsler billiard reflection law from the “least action principle”, and extend the basic properties of Riemannian and Euclidean billiards to the Finsler and Minkowski settings, respectively. We prove that the Finsler billiard map is a symplectomorphism, and compute the mean free path of the Finsler billiard ball. For the ...
متن کاملOn nonconvex caustics of convex billiards
Oliver Knill July 29, 1996 Abstract There are billiard tables of constant width, for which the billiard map has invariant curves in the phase space which belong to continuous but nowhere di erentiable caustics. We apply this to construct ruled surfaces which have a nowhere di erentiable lines of striction. We use it also to get Riemannian metrics on the sphere such that the caustic belonging at...
متن کاملResonant phenomena in slowly perturbed rectangular billiards
We consider a slowly rotating rectangular billiard with slowly moving borders. We use methods of the canonical perturbation theory to describe the dynamics of a billiard particle. In the process of slow evolution certain resonance conditions can be satisfied. We study the phenomena of scattering on a resonance and capture into a resonance. These phenomena lead to destruction of adiabatic invari...
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011