Nonpersistence of Resonant Caustics in Perturbed Elliptic Billiards

نویسندگان

  • SÔNIA PINTO-DE-CARVALHO
  • RAFAEL RAMÍREZ-ROS
چکیده

Caustics are curves with the property that a billiard trajectory, once tangent to it, stays tangent after every reflection at the boundary of the billiard table. When the billiard table is an ellipse, any nonsingular billiard trajectory has a caustic, which can be either a confocal ellipse or a confocal hyperbola. Resonant caustics —the ones whose tangent trajectories are closed polygons— are destroyed under generic perturbations of the billiard table. We prove that none of the resonant elliptical caustics persists under a large class of explicit perturbations of the original ellipse. This result follows from a standard Melnikov argument and the analysis of the complex singularities of certain elliptic functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-riemannian Geometry and Periodic Orbits in Classical Billiards

Classical (Birkhoff) billiards with full 1-parameter families of periodic orbits are considered. It is shown that construction of a convex billiard with a “rational” caustic (i.e. carrying only periodic orbits ) can be reformulated as the problem of finding a closed curve tangent to a non-integrable distribution on a manifold. The properties of this distribution are described as well as the con...

متن کامل

Billiards in Finsler and Minkowski geometries

We begin the study of billiard dynamics in Finsler geometry. We deduce the Finsler billiard reflection law from the “least action principle”, and extend the basic properties of Riemannian and Euclidean billiards to the Finsler and Minkowski settings, respectively. We prove that the Finsler billiard map is a symplectomorphism, and compute the mean free path of the Finsler billiard ball. For the ...

متن کامل

On nonconvex caustics of convex billiards

Oliver Knill July 29, 1996 Abstract There are billiard tables of constant width, for which the billiard map has invariant curves in the phase space which belong to continuous but nowhere di erentiable caustics. We apply this to construct ruled surfaces which have a nowhere di erentiable lines of striction. We use it also to get Riemannian metrics on the sphere such that the caustic belonging at...

متن کامل

Resonant phenomena in slowly perturbed rectangular billiards

We consider a slowly rotating rectangular billiard with slowly moving borders. We use methods of the canonical perturbation theory to describe the dynamics of a billiard particle. In the process of slow evolution certain resonance conditions can be satisfied. We study the phenomena of scattering on a resonance and capture into a resonance. These phenomena lead to destruction of adiabatic invari...

متن کامل

Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces

The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega,  $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011